A new criterion for an inexact parallel splitting augmented Lagrangian method
نویسندگان
چکیده
منابع مشابه
An inexact parallel splitting augmented Lagrangian method for large system of linear equations
Parallel iterative methods are powerful tool for solving large system of linear equations (LEs). The existing parallel computing research results are focussed mainly on sparse system or others with particular structure. And most are based on parallel implementation of the classical relaxation methods such as Gauss-Seidel, SOR, and AOR methods carried efficiently on multiprcessor systems. In thi...
متن کاملInexact accelerated augmented Lagrangian methods
The augmented Lagrangian method is a popular method for solving linearly constrained convex minimization problem and has been used many applications. In recently, the accelerated version of augmented Lagrangian method was developed. The augmented Lagrangian method has the subproblem and dose not have the closed form solution in general. In this talk, we propose the inexact version of accelerate...
متن کاملAn augmented Lagrangian method for distributed optimization
We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods kno...
متن کاملComplexity of an Inexact Augmented Lagrangian Method: Application to Constrained MPC
We propose in this paper an inexact dual gradient algorithm based on augmented Lagrangian theory and inexact information for the values of dual function and its gradient. We study the computational complexity certification of the proposed method and we provide estimates on primal and dual suboptimality and also on primal infeasibility. We also discuss implementation aspects of the proposed algo...
متن کاملAffine Invariant Convergence Analysis for Inexact Augmented Lagrangian-SQP Methods
An affine invariant convergence analysis for inexact augmented Lagrangian-SQP methods is presented. The theory is used for the construction of an accuracy matching between iteration errors and truncation errors, which arise from the inexact linear system solvers. The theoretical investigations are illustrated numerically by an optimal control problem for the Burgers equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2015
ISSN: 1029-242X
DOI: 10.1186/s13660-015-0660-1